Generalized 2D Euler–Boussinesq equations with a singular velocity
نویسندگان
چکیده
منابع مشابه
The 2d Euler-boussinesq Equations with a Logarithmically Supercritical Velocity
This paper establishes the global existence and uniqueness of solutions to a generalized 2D Euler-Boussinesq systems of equations with a logarithmically supercritical velocity.
متن کاملGeneralized Surface Quasi-geostrophic Equations with Singular Velocities
This paper establishes several existence and uniqueness results for two families of active scalar equations with velocity fields determined by the scalars through very singular integrals. The first family is a generalized surface quasi-geostrophic (SQG) equation with the velocity field u related to the scalar θ by u = ∇⊥Λβ−2θ, where 1 < β ≤ 2 and Λ = (−∆) is the Zygmund operator. The borderline...
متن کاملA Generalized Singular Value Inequality for Heinz Means
In this paper we will generalize a singular value inequality that was proved before. In particular we obtain an inequality for numerical radius as follows: begin{equation*} 2 sqrt{t (1-t)} omega(t A^{nu}B^{1-nu}+(1-t)A^{1-nu}B^{nu}) leq omega(t A + (1- t) B), end{equation*} where, $ A $ and $ B $ are positive semidefinite matrices, $ 0 leq t leq 1 $ and $ 0 leq nu leq frac{3}{2}.$
متن کاملGeneralized Helices and Singular Points
In this paper, we define X-slant helix in Euclidean 3-space and we obtain helix, slant helix, clad and g-clad helix as special case of the X-slant helix. Then we study Darboux, tangential darboux developable surfaces and their singular points. Especially we show that the striction lines of these surfaces are singular locus of the surfaces.
متن کاملSchrödinger-Maxwell equations with a singular potential
In this paper we find a ground state solution for the nonlinear Schrödinger-Maxwell equations { −∆u+ V (x)u+ φu = |u|p−1u in R3, −∆φ = u2 in R3. where V is a possibly singular potential and 3 < p < 5.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2014
ISSN: 0022-0396
DOI: 10.1016/j.jde.2014.03.012